鶹Լ

Children from Links Primary School in London investigate water rockets.

Dr Yan Wong explains the theory behind rocket power, and the children use plastic bottles filled with water and air pumps to see who can get theirs the furthest.

The most streamlined rocket shape is the most effective.

This short film is from the series The Bloodhound Adventure.

Teacher Notes

This clip has detailed instructions and guidelines that could be used prior to initiating an investigation into simple water rocket design and construction.

It explains how rockets work and suggests modifications that could help the pupils when predicting their own results in further tests.

A focus on the importance of fair testing and safety could be made, with the latter part of the clip being used to draw together evidence and support findings.

Curriculum Notes

This clip will be relevant for teaching Science or Design and Technology at Key Stage 2 in England, Wales and Northern Ireland, and Level 2 in Scotland.

Pink divider line

More from The Bloodhound Adventure

Experimenting with balloon-powered cars. video

Primary school pupils investigate which model car design is faster; one propelled by an elastic band around the axel, or a balloon-powered car which doesn't directly power the wheels.

Experimenting with balloon-powered cars

Experimenting with reaction times video

Children from New Invention Junior School in the West Midlands investigate their reaction times and how these are affected by distractions.

Experimenting with reaction times

What's Bloodhound like to drive? video

Primary school children investigate what driving a car at over 1000 mph would be like, by trying out at RAF flight simulator and taking a flight with Bloodhound's driver Andy Green.

What's Bloodhound like to drive?

Harnessing air resistance with parachutes. video

Children from Links Primary School in London investigate harnessing air resistance in order to safely drop an egg, experimenting with different parachute designs.

Harnessing air resistance with parachutes

How air resistance slows down vehicles. video

Bloodhound Investigators find out how air resistance can be used to slow down vehicles. They also discover the importance of traction, drag and aerodynamics.

How air resistance slows down vehicles

Investigating air and water resistance. video

Primary school children investigate which shapes travel fastest through water, to understand what is the best design for the Bloodhound Supersonic car.

Investigating air and water resistance

Investigating friction. video

Dr Yan Wong and children from Links Primary School in London investigate friction by trying to separate two interleaved books.

Investigating friction

Is the Bloodhound SSC a car, a boat or a plane? video

Bloodhound Investigators find out if Bloodhound SSC is a car, a boat or a plane. They compare and contrast features of each with input from members of the Bloodhound team.

Is the Bloodhound SSC a car, a boat or a plane?

What impact does air resistance and density have on travelling fast? video

Primary school children try skydiving, flying a microlight and racing in a swimming pool to understand how air resistance and density will affect the Bloodhound Supersonic car.

What impact does air resistance and density have on travelling fast?

Why doesn't Bloodhound have tyres? video

Primary school investigate why cars normally have tyres - even though Bloodhound SSC does not. They visit a race track to find out about grip and traction, and ride bikes to find out about comfort.

Why doesn't Bloodhound have tyres?

What makes a supersonic car move? video

Primary school children find out about the engines that will propel the Bloodhound Supersonic car to 1000 mph, a jet engine and a rocket engine.

What makes a supersonic car move?